Name: \qquad

Math at the Grocery Store

Part 1:

Brainstorm as many kinds of food that you can buy at the grocery store! What kinds of food can you buy fresh (perishable)? What kinds of food are in boxes, cans, or bags (non-perishable)?

Fresh Food (perishable)	Boxed, Canned, or Bagged Food (non-perishable)

Fresh food is priced differently than non-perishable food.
Find a flyer from a local grocery store. (See https://numeracylab.edublogs.org/2021/01/27/grocery-store-investigation/ for links)

Look up prices for different kinds of food. Look carefully for words that go with each price. For example, do you notice descriptors such as each, per pack, per 100 grams (etc.)? Read the whole flyer and list examples of the types of prices and descriptors that you found:
\qquad

Next, time for some writing followed by discussion!

What did you notice about the pricing of different foods? Was there a pattern? Why do you think different kinds of food are priced differently (e.g.: some by weight, some by unit, some by group)?

Kilogram vs. 100 grams vs. Pound:

Here is something else you might have noticed: different kinds of weight measurements from two different systems of measurement! Metric and imperial.

Take some time to watch the video on grams and kilograms
(see: https://numeracylab.edublogs.org/2021/01/27/grocery-store-investigation/)
Pounds a bit like kilograms, but lighter. It takes around $\mathbf{2}$ pounds to equal $\mathbf{1}$ kilogram (2.2 pounds, to be exact).

Time for some writing and discussion again!

Why do you think grocery stores use so many different kinds of measurement?

We're going to leave you with 1 problem to ponder:

Record your thinking on a separate piece of paper. Then discuss! What did you choose and why?

